
Reliability Lessons from Google Cloud
Jonah Mann
April 2020

go/google-cloud-reliability-lessons

This is my recollection of a formative event in my career as an engineer. Please forgive if some of the
details are misremembered.

In June 2019, Google Calendar suffered a highly publicized three-hour global outage. In response, Google
Cloud leadership decreed that all teams would make reliability their highest priority—above all
previously planned work—effective immediately. All non-emergency production releases were frozen
while leadership drafted a set of principles defining a sufficient level of safety, and systems would only be
allowed to resume releasing once they had met those principles.

After a few days, leadership released their principles. Change surfaces were categorized into one of four
“safety levels” (SLs):

0. Surfaces to which changes have immediate global impact
1. Surfaces with canaried rollout of changes
2. Surfaces with targeted canarying of changes
3. Surfaces with automated targeted canarying of changes

New systems could only be built at SL2 or SL3, and the production freeze would only be lifted for
existing systems once they were upgraded to at least SL1.

Committees were formed to flesh out exactly how these safety levels would be defined for different types
of systems. (The most common type of system in Google Cloud is an RPC server that serves user-scoped
requests.) I had the fortune of serving on the committee for batch processes.

Committees answered questions like: What constitutes canarying for this type of system? What fraction of
traffic should be in the canary population? What types of regressions should be monitored for in canary
populations? To what extent should such monitoring be automated? How should populations be
partitioned for targeted canarying?

For server binary rollouts:
● There should be a canary of 1-10% of traffic that includes a time of peak traffic. IIRC this

window had to be at least 20 hours. Note that for servers with a daily release cadence, there were
almost always two different builds serving production traffic at the same time. Engineers had to
take this into account when making changes.

● Automated canary regression tests monitored the differences between canary and control for
every server. For every RPC, the distributions of error rate, latency, and response size should be
about the same in the canary cell as in the control cells (unless the changes were intentional). Any
service built with the standard Google infrastructure received this monitoring by default.

● Where possible, rollouts should be targeted to begin with the most risk-tolerant traffic and
progress to the least risk-tolerant. A typical progression would be (1) a team of QA testers who

http://go/google-cloud-reliability-lessons
https://www.cnn.com/2019/06/18/tech/google-calendar-outage-trnd/index.html
https://www.theverge.com/2019/6/18/18683625/google-calendar-down-worldwide-outage-404-error


perform a set of manual regression tests on critical flows, (2) an opt-in group of teammates and
trusted dogfooders, (3) all Google employees, (4) consumer users, (5) enterprise users.

● At all times, there should be an engineer on call capable of performing a rollback, and the
rollback mechanism should be tested and shown to work.

Experiment rollouts had the same rollback requirements and should similarly follow a progression from
risk-tolerant populations to risk-averse, plus:

● Within each population, experiments should be rolled out exponentially (1%, 5%, 10%, 25%,
50%, 100%) or, for changes impacting database load, linearly (1%, 5%, 10%, 20%, 30%...).

For batch processes:
● Canarying would be accomplished by running the process over progressively more risk-averse

partitions, checking that the process behaved as expected before progressing to the next partition.
Ideally these checks would be automated, written as a phase of the job. Note that this style of
canarying might not be possible for jobs that have to scan an entire corpus, e.g. to look for
orphans.

● Mutating jobs should always perform a dry (read-only) run before a live run, and should output an
auditable record of all changes made.

● Wherever possible, all storage reads should be from backup replicas rather than live, user-serving
storage, and all reads should be filtered at the earliest possible stage.

● Read-only jobs should not have write access to storage.
● It was determined that bad batch processes could be especially destructive, so an extra restoration

requirement was added. Each batch process should include documentation for how to restore the
state before the process ran.

● Many teams made an effort to turn down as many regularly-running mutating batch jobs as
possible, converting them to other design patterns such as a persistent queue with one entry per
unit of work, where a successful processing of a queue message includes acking the message and
reenqueuing it for delivery after a fixed period.

Once the safety levels for each system type were fleshed out, teams all across Google Cloud worked to
get their systems upgraded.

This initiative undoubtedly took Google Cloud to a safer, more reliable state than it had previously been
in. One aspect, however, that rubbed me the wrong way was the top-down nature of the initial reaction to
the outages. Engineers were told to stop working on projects that they were emotionally invested in, and
projects approaching launch had bureaucratic procedural requirements abruptly changed at the last
minute. The cost of these mandates on employee morale was not taken into account.

Furthermore, from my perspective, leadership had long been neglecting rank-and-file engineers’
complaints that reliability took a back seat in performance reviews and promotion decisions to feature
launches, a problem which I don’t think any sincere initiative to improve reliability could be complete
without fixing.


